4,865 research outputs found

    List precoloring extension in planar graphs

    Full text link
    A celebrated result of Thomassen states that not only can every planar graph be colored properly with five colors, but no matter how arbitrary palettes of five colors are assigned to vertices, one can choose a color from the corresponding palette for each vertex so that the resulting coloring is proper. This result is referred to as 5-choosability of planar graphs. Albertson asked whether Thomassen's theorem can be extended by precoloring some vertices which are at a large enough distance apart in a graph. Here, among others, we answer the question in the case when the graph does not contain short cycles separating precolored vertices and when there is a "wide" Steiner tree containing all the precolored vertices.Comment: v2: 15 pages, 11 figres, corrected typos and new proof of Theorem 3(2

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    ‘Writing’ through design, an active practice

    Get PDF
    Stemming from a collaborative research project ‘designing, writing’, this article outlines preliminary findings to the various ways that design practices and design processes contextualize and explicate an intellectual proposition, i.e. how design contributes to advancing knowledge. The overall aim of the research investigation is to disseminate current understanding and best practice on the relationships between designing and writing and their mutual interest in speculation, expression and research. While most discussions around this topic adopt one of two (often polarized) distinct positions – the written text as sole authority and a design object’s capacity to be read as a cultural artefact – our investigation looks at various media of design articulation directly linked to design as a system of inquiry including but not limited to diaries, diagrams and choreographic notation and comics. These media expose a potential to ‘write’ through design and expand design research as non-linear, theoretical and yet practical tools

    Feature Selection for Predicting Tumor Metastases in Microarray Experiments using Paired Design

    Get PDF
    Among the major issues in gene expression profile classification, feature selection is an important and necessary step in achieving and creating good classification rules given the high dimensionality of microarray data. Although different feature selection methods have been reported, there has been no method specifically proposed for paired microarray experiments. In this paper, we introduce a simple procedure based on a modified t-statistic for feature selection to microarray experiments using the popular matched case-control design and apply to our recent study on tumor metastasis in a low-malignant group of breast cancer patients for selecting genes that best predict metastases. Gene or feature selection is optimized by thresholding in a leaving one-pair out cross-validation. Model comparison through empirical application has shown that our method manifests improved efficiency with high sensitivity and specificity

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Some Results On Convex Greedy Embedding Conjecture for 3-Connected Planar Graphs

    Full text link
    A greedy embedding of a graph G=(V,E)G = (V,E) into a metric space (X,d)(X,d) is a function x:V(G)Xx : V(G) \to X such that in the embedding for every pair of non-adjacent vertices x(s),x(t)x(s), x(t) there exists another vertex x(u)x(u) adjacent to x(s)x(s) which is closer to x(t)x(t) than x(s)x(s). This notion of greedy embedding was defined by Papadimitriou and Ratajczak (Theor. Comput. Sci. 2005), where authors conjectured that every 3-connected planar graph has a greedy embedding (possibly planar and convex) in the Euclidean plane. Recently, greedy embedding conjecture has been proved by Leighton and Moitra (FOCS 2008). However, their algorithm do not result in a drawing that is planar and convex for all 3-connected planar graph in the Euclidean plane. In this work we consider the planar convex greedy embedding conjecture and make some progress. We derive a new characterization of planar convex greedy embedding that given a 3-connected planar graph G=(V,E)G = (V,E), an embedding x: V \to \bbbr^2 of GG is a planar convex greedy embedding if and only if, in the embedding xx, weight of the maximum weight spanning tree (TT) and weight of the minimum weight spanning tree (\func{MST}) satisfies \WT(T)/\WT(\func{MST}) \leq (\card{V}-1)^{1 - \delta}, for some 0<δ10 < \delta \leq 1.Comment: 19 pages, A short version of this paper has been accepted for presentation in FCT 2009 - 17th International Symposium on Fundamentals of Computation Theor

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675
    corecore